Magnetoencephalography and
Electroencephalography Brainwave Activity
Visualization

1% Tobias
Computing Science Faculty
University of Alberta
Edmonton, Canada
ttobias @ualberta.ca

Abstract—Understanding human brain function is crucial for
various applications, including mental health treatments and
cognitive science. This report presents a project aimed at visual-
izing brainwave activity using Magnetoencephalography (MEG)
and Electroencephalography (EEG) data. The project addresses
challenges in data visualization and proposes methodologies for
data processing, classification, and 3D visualization. Evaluation
metrics validation using cross-validation techniques is also dis-
cussed. Through innovative visualization techniques and rigorous
validation, the project aims to contribute to advancements in
neuroscience research.

I. INTRODUCTION

The intricacies of human brain function are pivotal for un-
raveling mysteries surrounding consciousness and improving
mental health treatments. Despite its complexity, advance-
ments in neuroscience, particularly through MEG and EEG
analysis, offer promising avenues for deeper insights into
brain activity. However, challenges in visualizing brainwave
data, including limited techniques and complex interpretation,
hinder comprehensive analysis. This project aims to address
these challenges by proposing methodologies for data process-
ing, classification, and 3D visualization. Through innovative
visualization techniques and rigorous validation, the project
seeks to contribute to advancements in neuroscience research
and applications in mental health and cognitive science.

II. APPROACH AND METHODOLOGIES
A. Approach Overview

The proposed approach for this proposal involves several

steps:

o Data Processing and Classification : The program
reads, classifies, and maps the MEG and EEG dataset,
categorizing brainwave signals based on frequency and
associated mental activities.

o Segmentation and 2D Visualization : The clustered
brainwave data are segmented into specific brain areas,
and 2D visualization are generated to visualize the spatial
distribution of neural activity.

o 3D Visualization : The final goal is to visualize the
clustered and segmented brainwave data on a 3D model,

2" Haoyu Qiu
Computing Science Faculty
University of Alberta
Edmonton, Canada
hqgiu3 @ualberta.ca

3" Sanjana Guntha
Computing Science Faculty
University of Alberta
Edmonton, Canada
sguntha@ualberta.ca

providing context understanding of how certain brain-
waves work.

o Evaluation Metrics Validation : The project utilizes
leave-one-out cross-validation (LOOCV) with Random
Forest Classifier to assess the classifier’s performance in
distinguishing auditory and visual conditions based on
raw evoked data, ensuring robust evaluation of classifica-
tion accuracy.

B. Dataset Overview

In this project, we initially utilized the MNE Sample Dataset
as the foundational dataset. These data were collected using
the Neuromag Vectorview system at MGH/HMS/MIT Athi-
noula A. Martinos Center for Biomedical Imaging. The EEG
data were acquired concurrently with the MEG using a 60-
channel electrode cap. The original MRI dataset was obtained
using a Siemens 1.5 T Sonata scanner with an MPRAGE
sequence. During the experiment, checkerboard patterns were
presented to the subjects in the left and right visual fields,
interspersed with tones to the left or right ear. The interval
between stimuli was set at 750 ms. Additionally, a smiley
face occasionally appeared at the center of the visual field,
prompting subjects to press a key with their right index finger
as quickly as possible upon its appearance. The sample dataset
comprises two main directories: MEG/sample (containing the
MEG/EEG data) and subjects/sample (containing the MRI
reconstructions).

TABLE I
CONTENTS OF THE MEG/SAMPLE DIRECTORY

File Contents

Sample/audvis_raw.fif The raw MEG/EEG data

Audvis.ave A template script for off-line averaging

Auvis.cov Noise-covariance matrix template

Moreover, we explored the same methodology with an
additional dataset to assess the adaptability of our approach
to different types of data. The second dataset utilized EEG

TABLE II
OVERVIEW OF THE CONTENTS OF THE SUBJECTS/SAMPLE DIRECTORY.

File / directory Contents
bem Directory for the forward modelling data
bem/watershed BEM surface segmentation

bem/inner_skull.surf Inner skull surface for BEM

bem/outer_skull.surf Outer skull surface for BEM

bem/outer_skin.surf Skin surface for BEM

sample-head.fif Skin surface in fif format

surf Surface reconstructions

mri/T1 The T1-weighted MRI data

data records from individuals with alcohol use disorder. These
data originated from a comprehensive study investigating EEG
correlates of genetic predisposition to alcoholism. The dataset
includes measurements from 64 electrodes positioned on the
subjects’ scalps, sampled at 256 Hz (with 3.9-msec epochs)
for 1 second.

Correlation between Sensor Positions for S2 match stimulus

Alcoholic group Control group

oooiiE

Fig. 1. Alcoholic Dataset

The subjects were divided into two groups: alcoholic and
control. Each subject was exposed to either a single stimulus
(S1) or two stimuli (S1 and S2), which were pictures of objects
selected from the 1980 Snodgrass and Vanderwart picture set.
When two stimuli were presented, they were either matched,
with S1 identical to S2, or non-matched, where S1 differed
from S2.

C. Data Visualization Methodologies

The data visualization methodologies proposed in this
project encompass various techniques such as signal traces,
scalp topographies, and 3D field maps, providing researchers
with comprehensive insights into neural activity patterns.
These visualizations offer researchers a nuanced understanding
of brain function, facilitating the identification of spatial
patterns, cognitive processes, and event-related potentials, thus
enhancing the depth of analysis and interpretation in neuro-
science research.

1. Signal traces : Signal traces are graphical representations
of the electrical activity recorded from each channel type,
generated using the plotting method in MNE-Python.
These traces can be customized by excluding “bad”
channels, selecting specific channels for plotting, and

. Scalp topographies

. Arrow Maps

EEG (60 channels) [— Magnetometers (102 channels)

Fig. 2. Signal Traces

color-coding the traces based on channel location using
the picks parameter and spatial_colors () =True.
Additionally, the function allows the overlay of a trace
of the root mean square (RMS) across channels, referred
to as gfp=True. This feature accurately displays the
RMS for magnetoencephalography (MEG) data and the
global field power for electroencephalography (EEG)
data, providing insights into the overall signal magnitude
and distribution across channels.

0.050 s 0.070s 0.090s 0.110s 0.130s T
. ' .

Fig. 3. Scalp Topographies

Plotting scalp topographies
entails creating visual representations that showcase the
average field distribution over the scalp at particular
moments or intervals. These representations offer
detailed insights into the spatial patterns of neural
activity across the scalp’s surface. By utilizing methods
such as plot_topomap (), users can generate
these topographic maps, which are valuable tools in
neuroscientific research and data analysis. These maps
allow researchers to observe how neural activity is
distributed across different scalp regions, aiding in
the interpretation of cognitive processes, event-related
potentials (ERPs), and other aspects of brain function.
Through the visualization of scalp topographies,
researchers can identify spatial patterns of brain activity
associated with specific stimuli, cognitive tasks, or
experimental conditions, enhancing their understanding
of neural dynamics and brain functioning.

Arrow maps enhance scalp
topographies by incorporating arrows to represent
the magnitude and direction of the magnetic field at
a specific time point. Implemented with the function
mne.viz.plot_arrowmap (), they offer valuable
insights into the spatial distribution of magnetic
fields across the scalp surface, particularly useful in
magnetoencephalography (MEG) data analysis.

Fig. 4. Arrow Maps

Magratameters (102 channels)
(TN cums cans osezs

EEG (61 chanmsis]
026

Fig. 5. Join Plots

4. Join Plots : Joint plots are comprehensive visualizations

that merge butterfly plots with scalp topographies,
offering an initial overview of evoked data. By default,
these plots automatically position topographies based on
peak finding, facilitating easy interpretation. For instance,
when plotting conditions such as the right-visual-field
condition, separate figures are generated for each channel
type if no picks are specified. This integration of butterfly
plots and scalp topographies provides researchers with
a holistic view of neural activity patterns, aiding in the
identification of significant features and trends within
the data.

Signal amay as an image (64 x 256)

vvvvv

Fig. 6. Image Plots

. Image Plots The plot_image () method for
Evoked objects provides a visualization similar to
that of Epochs, yet with a distinct presentation:
instead of each row representing one epoch, each
row represents one channel. This layout allows
for a focused examination of individual channels
over time. Similar to epochs.plot_image (),
evoked.plot_image () offers a picks parameter for
channel selection and various customization options for
further analysis and visualization refinement. Researchers
can explore specific channels’ temporal dynamics and
patterns more effectively using this method, enhancing

. Topographical subplots

their understanding of neural activity captured by the
Evoked object.

Fig. 7. Topographical Subplots

Topographical subplots
visually represent sensor-level analyses, displaying
the response at each sensor within a topographical
layout. plot_topo () displays a single condition,
while plot_evoked_topo() handles multiple
conditions if provided with a list of Evoked objects.
Legend entries are automatically generated from
the Evoked objects’ comment attribute. By default,
plot_evoked_topo () includes all MEG sensors,
requiring adjustments to focus on EEG sensors using
methods like mne.pick_typed (). This method aids
in comparing and analyzing neural responses across
different conditions efficiently.

Fig. 8. 3D Field Maps

7. 3D Field Maps : 3D field maps provide an alternative

visualization to the two-dimensional scalp topographies,
offering a three-dimensional representation of the field.

To generate these maps, a trans file is necessary to
transform locations between the coordinate systems of
the MEG device and the head surface, typically based
on MRI data. By default, MEG sensors estimate the field
on the helmet surface, while EEG sensors estimate the
field on the scalp. Once computed, these maps can be
plotted using evoked.plot_field (). Additionally,
MEG sensors can be used to estimate the scalp field by
specifying meg_surf='head’. Comparing scalp field
estimates from different sensor types enables researchers
to gain insights into neural activity patterns across differ-
ent modalities.

III. EVALUATION METRICS VALIDATION

For the wvalidation in this project we are utilizing
leave-one-out cross-validation (LOOCV) with MNE-Python’s
cross_val_multiscore function to evaluate the perfor-
mance of a Random Forest Classifier in distinguishing between
auditory and visual conditions based on raw evoked data.
This approach iteratively trains and evaluates the classifier on
subsets of the data, leaving one sample out as a test set in
each iteration. By computing performance metrics for each
fold of the cross-validation, the methodology ensures robust
assessment of the classifier’s generalization ability, enabling
meaningful insights into the classification task.

TABLE III
LOOCYV EVALUATION METRICS

Cross-validation scores | Mean Accuracy
[0. 1. 0. 0.] 0.25
Accuracy of the brainwave classification.

IV. PROJECT CONTRIBUTION

My contribution to this project involves conducting
research to identify the most suitable method for visualizing
brainwave activity. Through careful examination, I determined
that MNEPython offers the most appropriate tools for this
project. Utilizing the MNE sample dataset, I plotted the
data accordingly to create both 2D and 3D visualizations
of brainwave activity, effectively distinguishing between
right and left audio/visual clusters. Furthermore, I integrated
evaluation metrics into the analysis, employing leave-one-out
cross-validation (LOOCYV) with Random Forest Classifier.
This approach allows for the assessment of the classifier’s
performance in discerning auditory and visual conditions ,
based on raw evoked data.

-V NS

V. INSTRUCTIONS TO COMPILE THE CODE

This code has been thoroughly tested using Spyder MNE,
a free and open-source scientific environment tailored for
Python developers, specifically designed for scientists, en-
gineers, and data analysts. Please visit https://www.spyder-
ide.org/ to download the Spyder MNE software. To ex-
ecute the MNE Sample Dataset Visualization code, sim- i

ply run the attached script in Spyder with MNE. How-
ever, visualizing the Alcoholic Group Dataset requires
manual download of the dataset and adjustment of the
data path. Please download the dataset from the Kaggle
link https://www.kaggle.com/datasets/nnair25/Alcoholics. Af-
ter downloading, adjust the code to load the dataset from
the specified path * SMNI_CMI_TRAIN/«.csv’ according
to the downloaded location. Upon execution, the code will
generate visualizations of the brainwave activity data in both
2D and 3D formats, providing valuable insights into the under-
lying patterns and clusters. The 2D images will be displayed
in the right side plot panels, showing various visualization
methods elaborated in this paper. The 3D visualization will
appear in the MNE PyVista scene, which has several display
configurations such as play and pause animation, animation
time duration, maximum values, and contour lines. The cross-
validation score and mean accuracy will be displayed in the
iPython console section, which also shows the compiled codes
step by step.

REFERENCES

[1] McClay, W. A., Yadav, N., Ozbek, Y., Haas, A., Attias, H. T,
& Nagarajan, S. S. (2015). A Real-Time Magnetoencephalography
Brain-Computer Interface Using Interactive 3D Visualization and the
Hadoop Ecosystem. Brain Sciences, 5(4), 419-440. https://doi.org/10.
3390/brainsci5040419

Hassan, M., Shamas, M., Khalil, M., Falou, W. E., & Wendling, F.
(2015). EEGNET: An Open Source Tool for Analyzing and Visualizing
M/EEG Connectome. PLOS ONE, 10(9), e0138297. https://doi.org/10.
1371/journal.pone.0138297

McClay, W. (2018). A Magnetoencephalographic/Encephalographic
(MEG/EEG) Brain-Computer Interface Driver for Interactive iOS Mo-
bile Videogame Applications Utilizing the Hadoop Ecosystem, Mon-
goDB, and Cassandra NoSQL Databases. Diseases, 6(4), 89. https:
//doi.org/10.3390/diseases6040089

Fred, A. L., Kumar, S. N., Kumar Haridhas, A., Ghosh, S., Pu-
rushothaman Bhuvana, H., Sim, W. K., Vimalan, V., Givo, F. A.,
Jousméki, V., Padmanabhan, P., & Gulyas, B. (2022). A Brief Introduc-
tion to Magnetoencephalography (MEG) and Its Clinical Applications.
Brain Sciences, 12(6), 788. https://doi.org/10.3390/brainsci12060788

[2]

[3]

[4]

VI. SOURCE CODE
A. MNE Sample Dataset Visualization

import os

import numpy as np

import mne

from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import LeaveOneOut
from mne.decoding import cross_val_multiscore

sample_data_folder = mne.datasets.sample.data_path()

Setting the path to MNE sample data
sample_data_evk_file = os.path.join(sample_data_
folder, 'MEG', 'sample', 'sample_audvis—ave.fif'

) # Constructing the path to the evoked file

Reading evoked data from a file, applying baseline
correction , and storing in a list

evokeds_list = mne.read_evokeds(sample_data_evk_file

, baseline=(None, 0), proj=True, verbose=False)

s|# Show the condition names and baseline correction

status for each evoked dataset
for e in evokeds_list:

20

26

IS

64

3| mags

print (f'Condition: {e.comment}, baseline: {e.
baseline} ")

conds ('aud/left ', "vis/
right")

evks = dict(zip(conds, evokeds_list)) # Creating a
dictionary of evoked datasets with condition

names as keys

"aud/right ', 'vis/left',

Plotting evoked data for 'audlleft' condition
evks['aud/left ']. plot(exclude=[])

Plotting magnetometer data for 'audl/left'
condition with spatial colors and global field

power

evks['aud/left ']. plot(picks="'mag', spatial_colors=
True, gfp=True)

times = np.linspace (0.05, 0.13, 5)

Plotting topographic maps for magnetometer data of

"aud/ left ' condition at specified times

evks['aud/left ']. plot_topomap(ch_type="mag"',
times, colorbar=True)

times=

Plotting arrow maps for magnetometer data of 'aud/

left ' condition

mne.viz.plot_arrowmap(mags. data[:,
extrapolate="local ")

175], mags.info ,

Plotting joint plot for evoked data
condition
evks['vis/right ']. plot_joint ()

of 'vis/right'

Plotting comparison of evoked datasets with
different combination methods

def custom_func(x):
return x.max(axis=1)

for combine
):
mne. viz.plot_compare_evokeds (evks,
combine=combine)

in ('mean', 'median', 'gfp', custom_func

picks='eeg ',

Plotting comparison of evoked datasets for a
specific MEG channel

mne.viz.plot_compare_evokeds (evks, picks='MEG 1811",
colors=dict(aud=0, vis=1), linestyles=dict(left
='solid ', right="dashed "))

temp_list list ()
Creating a temporary list

modified comments

of evoked datasets with

for idx, _comment in enumerate (('foo', 'foo', '',
None, 'bar'), start=1):
_evk = evokeds_list[0].copy()
_evk.comment = _comment
_evk.data == idx # Multiplying data to

differentiate traces
temp_list.append(_evk)

Plotting comparison of temporary evoked datasets

mne. viz . plot_compare_evokeds (temp_list , picks="'mag')

Plotting image of evoked data for !
condition

evks['vis/right ']. plot_image(picks="meg")

"vis/lright

s|# Plotting comparison of evoked datasets with

customization options for EEG channels

mne. viz . plot_compare_evokeds(evks, picks='eeg',
colors=dict(aud=0, vis=1), linestyles=dict(left=
'solid ", right="dashed '), axes='topo', styles=
dict (aud=dict (linewidth=1), vis=dict(linewidth

evks['aud/left'].copy().pick_types(meg='mag')

1
1

=

=

=

;| maps

=1)))

5| # Plotting topographic maps of evoked data for all

conditions
mne. viz.plot_evoked_topo(evokeds_list)

'

subjects_dir
subjects ')

sample_data_trans_file
folder, 'MEG', 'sample
trans . fif ")

os.path.join (sample_data_folder ,

os.path.join(sample_data_
! 'sample_audvis_raw—

Making and plotting field maps for
condition

= mne.make_field _map(evks["aud/left '], trans=
sample_data_trans_file , subject='sample ',
subjects_dir=subjects_dir)
evks['aud/left ']. plot_field (maps,

"aud/ left '

time=0.1)

| # Making and plotting field maps for each channel

type
for ch_type in ('mag', 'grad', ‘'eeg'):

evk = evks['aud/right '].copy().pick(ch_type)

_map = mne.make_field_map(evk, trans=sample_data
_trans_file , subject='sample', subjects_dir=
subjects_dir, meg_surf="head")

fig evk.plot_field (_map, time=0.1)

mne.viz.set_3d_title (fig, ch_type, size=20)

Evaluation

Setting the path to MNE sample data
sample_data_folder = mne.datasets.sample.data_path ()

Constructing the path

sample_data_evk_file
folder , 'MEG',
)

to the evoked file
= os.path.join(sample_data_
'sample ', 'sample_audvis—-ave. fif'

Reading evoked data from a file , applying baseline
correction , and storing in a list
evokeds_list mne.read_evokeds (sample_data_evk_file
, baseline=(None, 0), proj=True, verbose=False)

Creating a dictionary of evoked datasets with
condition names as keys

conds = (‘'aud/left', 'aud/right', 'vis/left', 'vis/
right ")
evks = dict(zip(conds, evokeds_list))
Define features (X) and labels (y) for
classification
X =1
y = [l
for cond_name, evk in evks.items ():
X.append(evk.data) # Using raw evoked data as
features
if 'aud' in cond_name:
y.append(0) # Assigning label 0 for
auditory conditions
else:
y.append (1) # Assigning label 1 for visual
conditions
X = np.array (X)
y = np.array(y)
Flatten the data for RandomForestClassifier
X_flattened = np.concatenate ([x.reshape(l, —-1) for x

in X])

3| # Define the machine learning model (Random Forest

Classifier)
estimator = RandomForestClassifier ()

116

30

Perform leave —one—out cross—validation (LOOCV) and

evaluate the model's performance

loo = LeaveOneOut ()

scores = cross_val_multiscore(estimator , X_flattened
, y, cv=loo)

Print the cross—validation scores and mean
accuracy

print ("Cross—validation scores:”, scores)

print (”Mean accuracy:”, np.mean(scores))

MNE_Dataset.py

B. Alcoholic Group Dataset Visualization

50

o| def get_dataframe_records (df, name,

import mne
import numpy as np
import pandas as pd
import os

from tqdm import tqdm
import glob
from matplotlib

import pyplot as plt

#to get the dataframe records from the dataset

trial _number,

matching_condition, channel_list):

df _record df[df['name '].eq(name) & df['trial
number'].eq(trial _number) & df['matching
condition '].eq(matching_condition)]. set_
index (['sensor position']).loc[channel_list]

return df_record

#the function to get the signal array for
visualization
def get_signal_array(df, name, trial_number,
matching_condition, channel_list):
df _record df[df['name'].eq(name) & df['trial
number'].eq(trial _number) & df['matching
condition '].eq(matching_condition)]. set_
index (["sensor position']).loc[channel_list]
return df_record.to_numpy()[:, 4:]

#The function to plot the topomap for the eeg data
def plot_topomap(signal_array, save_path_animation=

None, show_names=False , start_time=0.05, end_
time=1, step_size=0.1):
montage = mne.channels.make_standard_montage ('

standard_1020")
ch_to_remove = []
for ch in channel_list_fixed:
if ch not in list(set(montage.ch_names).
intersection (channel_list_fixed)):
ch_to_remove.append(channel_list_fixed.
index (ch))

arr = np.delete (signal_array.copy(), ch_to_
remove, axis=0)

info = mne.create_info(ch_names=list (set(montage
.ch_names).intersection (channel_list_fixed))
, sfreq=256, ch_types='eeg')

evkd = mne.EvokedArray (arr, info)

evkd.set_montage (montage)

evkd. plot_topomap(np.arange(start_time, end_time
, step_size), ch_type='eeg', time_unit="'s",
ncols=5, nrows=2, show_names=show_names)

1

3| def

in!

#The function
eeg data
plot_joint_topomap(signal_array ,
animation=None, show_names=False ,
=0.05, end_time=1, step_size=0.1):

to plot the jointed topomap for the
save_path_
start_time

montage = mne.channels.make_standard_montage ('
standard_1020")
ch_to_remove = []
for ch in channel_list_fixed:
if ch not in list(set(montage.ch_names).
intersection (channel_list_fixed)):
ch_to_remove.append(channel_list_fixed.
index (ch))

arr = np.delete(signal_array.copy(), ch_to_
remove, axis=0)

info = mne.create_info (ch_names=1list (set(montage
.ch_names).intersection (channel_list_fixed))
, sfreq=256, ch_types='eeg"')

evkd = mne.EvokedArray (arr, info)

evkd.set_montage (montage)
evkd. plot_joint ()
sample_data_folder = mne. datasets

sample_data_evk_file
folder , 'MEG',

.sample . data_path ()
os.path.join (sample_data_
'sample ',

'sample_audvis —
ave. fif ")

#Load the csv file
_dfs_Tlist []

p = glob.glob ('SMNI_CMI_TRAIN/#*.csv ")

for files in tqdm(glob.glob ('SMNI_CMI_TRAIN/#*.csv "))

into dataframe

_dfs_list.append(pd.read_csv(files))
print(_dfs_list)
df = pd.concat(_dfs_list)
del (_dfs_1list)
df = df.drop (['Unnamed:
df.head (3)

0'], axis=l)

channel_list list(set(df['sensor
channel_list.sort ()

position ']))

#The dictionary to correct the channel name

channel _mapping_dict = {
'AFZ': "AFz ',
'CPZ':'CPz"',
'CZ':.'Cz "',
'FCZ': 'FCz ',
'"FP1': "Fpl "',
"FP2': 'Fp2 ',
'"FPZ': 'Fpz ',
'FZ': 'Fz ',
'0Z':'0z",
'POZ"': 'POz "',
'PZ': Pz,
channel_mapping_full = dict()

#map the channel names
for ch in channel_list:
if ch in channel_mapping_dict:

106

10

108
109
110
111
112

116
117

118

119

120

channel _mapping_full[ch] channel _mapping_

dict[ch]
else:
channel _mapping_full[ch] = ch
channel_list_fixed = [channel_mapping_full[ch] for

ch in channel_list]

df['sensor position'] = df['sensor
channel_mapping_full)

df.head (3)

position '].map(

transposed_dataframe_list = []

#organize and reconstruct the dataframe containing
EEG data

for group_dataframe in tqdm(df.groupby (['name’,
trial number', 'matching condition', 'sensor
position', 'subject identifier '])):

'

tmp = pd.DataFrame (group_dataframe[1]['sensor
value ']).T
tmp.columns = [f'sample_{idx}' for idx in range

(256)]
tmp['name '] = group_dataframe [0][0]
tmp['trial number'] = group_dataframe [0][1]
tmp['matching condition '] = group_dataframe
[01r2]
tmp['sensor
tmp['subject
[01[4]

position'] = group_dataframe [0][3]
identifier '] = group_dataframe

transposed_dataframe_list.append(tmp)

df = pd.concat(transposed_dataframe_1list)

df = df[[*«df.columns[—-5:],xdf.columns[0:-5]]]
df = df.reset_index (drop=True)

df.head (3)

the dataset
get_dataframe_records (df,
obj ', channel_list_fixed)

#visualize
df _record =
0, 'Sl

'c02a0000364 ',

signal_array = get_signal_array (df, 'co02a0000364",

10, 'S1 obj', channel_list_fixed)
plt.title ('Signal Array as an image (64 x 256)")
plt.ylabel ('Sensor Position)")
plt.xlabel ('Sample Numbers ")
plt.imshow(signal_array.astype(int))
plt.show ()

3| #generate plot of signal over sample numbers

channels_to_display = ['AFl', 'CP3', 'Fl1']

for channel in channels_to_display:
plt.xlabel ('Sample number")
plt.plot(signal_array[channel_list.index (channel

D

plt.legend(channels_to_display)

info_data = mne.create_info (ch_names=channel_list_
fixed, sfreq=256, ch_types=['eeg']*x64)

raw = mne.io.RawArray(signal_array , info_data)

standard _1020_montage = mne.channels.make_standard_
montage ('standard_1020")

raw . drop_channels (['X', 'Y', 'nd'])
raw.set_montage(standard_1020_montage)
raw . plot_psd ()

raw. plot_psd(average=True)

0

raw_filtered = verbose=False

)
raw_filtered .plot_psd()
raw_filtered .plot_psd(average=True)

raw.copy (). filter (8,30,

plt.imshow(raw.get_data())

plt.show ()

plt.imshow (raw.copy (). filter (1,10, verbose=False).
get_data())

plt.show ()

plt.plot(raw.copy().get_data()[40])

plt.plot(raw.copy (). filter (8,30, verbose=False).get_
data () [40])

ica = mne. preprocessing .ICA(random_state =42, n_
components=20)

ica. fit(raw.copy().filter (1,None, verbose=False),
verbose=False)

ica.plot_components ()

plot_topomap(signal_array , show_names=False)

plot_joint_topomap(signal_array)

Alcoholic_Group.py

